

August 2011 Doc ID 018903 Rev 2 1/19

STM8L151x2 STM8L151x3
Errata sheet

STM8L151x2 and STM8L151x3 revision Z device limitations

Silicon identification
This errata sheet applies to revision Z of the STMicroelectronics STM8L151x2 and
STM8L151x3 devices.

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

● by the revision code marked below the order code on the device package

● by the last three digits of the Internal order code printed on the box label

 .

Table 1. Device identification

Order code Revision code marked on device

STM8L151K2, STM8L151G2, STM8L151F2 “Z”

STM8L151C3, STM8L151K3, STM8L151G3, STM8L151F3 “Z”

Table 2. Device summary

Reference Part number

STM8L151x2 STM8L151K2, STM8L151G2, STM8L151F2

STM8L151x3 STM8L151C3, STM8L151K3, STM8L151G3, STM8L151F3

www.st.com

http://www.st.com

Contents Errata sheet

2/19 Doc ID 018903 Rev 2

Contents

1 STM8L151x2/x3 silicon limitations . 3

1.1 Core limitations . 4

1.1.1 Interrupt service routine (ISR) executed with priority of main process . . 4

1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit 4

1.1.3 Unexpected DIV/DIVW instruction result in ISR 4

1.1.4 Incorrect code execution when WFE execution is interrupted by ISR . . . 5

1.1.5 Core kept in stall mode when DMA transfer occurs during program/
erase operation to EEPROM . 6

1.2 System limitations . 8

1.2.1 PA0, PB0 and PB4 configuration “at reset state” and “under reset” 8

1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by
the use of adjacent I/Os . 8

1.3 I2C peripheral limitations . 9

1.3.1 I2C event management . 9

1.3.2 Corrupted last received data in I2C Master Receiver mode 9

1.3.3 Wrong behavior of the I2C peripheral in Master mode after misplaced
STOP 10

1.3.4 Violation of I2C “setup time for repeated START condition” parameter . 11

1.3.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors 11

1.3.6 SMBus standard not fully supported in I2C peripherals 12

1.4 USART peripheral limitations . 13

1.4.1 USART IDLE frame detection not supported in the case of
a clock deviation . 13

1.4.2 PE flag can be cleared in USART Duplex mode by writing to
the data register . 13

1.4.3 PE flag is not set in USART Mute mode using address mark detection 13

1.4.4 IDLE flag is not set using address mark detection in
the USART peripheral . 14

Appendix A Revision code on device marking . 15

Revision history . 18

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 3/19

1 STM8L151x2/x3 silicon limitations

Table 3 gives a summary of the fix status.

Legend for Table 3: A = workaround available; N = no workaround available; P = partial
workaround available; N/A: not applicable; ‘-’ and grayed = fixed.

Table 3. Summary of STM8L151x2/3 silicon limitations

Section Limitation Rev. Z

Section 1.1: Core
limitations

Section 1.1.1: Interrupt service routine (ISR) executed with
priority of main process

N

Section 1.1.2: Main CPU execution is not resumed after an ISR
resets the AL bit

A

Section 1.1.3: Unexpected DIV/DIVW instruction result in ISR A

Section 1.1.4: Incorrect code execution when WFE execution is
interrupted by ISR

A

Section 1.1.5: Core kept in stall mode when DMA transfer occurs
during program/ erase operation to EEPROM

A

Section 1.2: System
limitations

Section 1.2.1: PA0, PB0 and PB4 configuration “at reset state”
and “under reset”

N

Section 1.2.2: 32.768 kHz LSE crystal accuracy may be
disturbed by the use of adjacent I/Os

N

Section 1.3: I2C
peripheral limitations

Section 1.3.1: I2C event management A

Section 1.3.2: Corrupted last received data in I2C Master
Receiver mode

A

Section 1.3.3: Wrong behavior of the I2C peripheral in Master
mode after misplaced STOP

A

Section 1.3.4: Violation of I2C “setup time for repeated START
condition” parameter

A

Section 1.3.5: In I2C slave “NOSTRETCH” mode, underrun
errors may not be detected and may generate bus errors

A

Section 1.3.6: SMBus standard not fully supported in I2C
peripherals

A

Section 1.4: USART
peripheral limitations

Section 1.4.1: USART IDLE frame detection not supported in the
case of a clock deviation

N

Section 1.4.2: PE flag can be cleared in USART Duplex mode by
writing to the data register

A

Section 1.4.3: PE flag is not set in USART Mute mode using
address mark detection

N

Section 1.4.4: IDLE flag is not set using address mark detection
in the USART peripheral

N

STM8L151x2/x3 silicon limitations Errata sheet

4/19 Doc ID 018903 Rev 2

1.1 Core limitations

1.1.1 Interrupt service routine (ISR) executed with priority of main process

Description

If an interrupt is cleared or masked when the context saving has already started, the
corresponding ISR is executed with the priority of the main process.

Workaround

None.

No fix is planned for this limitation.

1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit

Description

If the CPU is in wait for interrupt state and the AL bit is set, the CPU returns to wait for
interrupt state after executing an ISR. To continue executing the main program, the AL bit
must be reset by the ISR. When AL is reset just before exiting the ISR, the CPU may remain
stalled.

Workaround

Reset the AL bit at least two instructions before the IRET instruction.

No fix is planned.

1.1.3 Unexpected DIV/DIVW instruction result in ISR

Description

In very specific conditions, a DIV/DIVW instruction may return a false result when executed
inside an interrupt service routine (ISR). This error occurs when the DIV/DIVW instruction is
interrupted and a second interrupt is generated during the execution of the IRET instruction
of the first ISR. Under these conditions, the DIV/DIVW instruction executed inside the
second ISR, including function calls, may return an unexpected result.

The applications that do not use the DIV/DIVW instruction within ISRs are not impacted.

Workaround 1

If an ISR or a function called by this routine contains a division operation, the following
assembly code should be added inside the ISR before the DIV/DIVW instruction:

push cc
pop a
and a,#$BF
push a
pop cc

This sequence should be placed by C compilers at the beginning of the ISR using
DIV/DIVW. Refer to your compiler documentation for details on the implementation and
control of automatic or manual code insertion.

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 5/19

Workaround 2

To optimize the number of cycles added by workaround 1, you can use this workaround
instead. Workaround 2 can be used in applications with fixed interrupt priorities, identified at
the program compilation phase:

push #value
pop cc

where bits 5 and 3 of #value have to be configured according to interrupt priority given by I1
and I0, and bit 6 kept cleared.

In this case, compiler workaround 1 has to be disabled by using compiler directives.

No fix is planned for this limitation.

1.1.4 Incorrect code execution when WFE execution is interrupted by ISR

Description

Two types of failures can occur:

Case 1:

In case WFE instruction is placed in the two MSB of the 32-bit word within the program
memory, an event which occurs during the WFE re-execution cycle when returning from ISR
handler will cause an incorrect code execution.

Case 2:

An interrupt request, which occurs during the WFE execution cycle will lead to incorrect
code execution. This is also valid for the WFE re-execution cycle, while returning from an
ISR handler.

The above failures have no impact on the core behavior when the ISR request or events
occur in Wait for Event mode itself, out of the critical single cycle of WFE instruction
execution.

Workaround

Case 1:

Replace the WFE instruction with

WFE
JRA next

next

STM8L151x2/x3 silicon limitations Errata sheet

6/19 Doc ID 018903 Rev 2

Case 2:

It is recommended to avoid any interrupts before WFE mode is entered.

This can be done by disabling all interrupts before the device enters Wait for event mode.

SIM
WFE
RIM

This workaround is also valid for case 1.

Another solution is to ensure no interrupt request occurs during WFE instruction execution
or re-execution cycle by proper application timing.

No fix is planned for this limitation.

1.1.5 Core kept in stall mode when DMA transfer occurs during program/
erase operation to EEPROM

Description

When the MCU performs EEPROM program/erase operation, the core is stalled during data
transfer to the memory controller, which occurs at the beginning of the program/erase
operation. If a DMA request servicing starts while the core is stalled, the core does not
return from stall mode to program execution.

The core is stalled for 11 cycles during byte program/erase, 8 cycles during word
program/erase and 3 cycles during each word transfer in block programming mode. For
block erase, the core is stalled for 127 cycles.

When a DMA request arises, it is only served if the DMA priority is higher than the core
access priority.

If the current DMA priority is lower than the core one, the DMA service is delayed until the
core access becomes idle.

The DMA also includes a programmable timeout function, configurable by DMA_GCSR
register. If the core does not release the bus during this timeout, the DMA automatically
increases its own priority and forces the core to release the bus for DMA service.

No fix is planned.

Several workarounds are available for this limitation.

Workaround 1

Disable all DMA requests during data transfer to the EEPROM.

This workaround is applicable for all program/erase operations.

Workaround 2

Configure DMA programmable timeout in the DMA_GCSR register to exceed the number of
stall cycles required during the transfer. DMA priority must never be configured to a very
high level.

This workaround is applicable for all program/erase operations except block erase.

In order to apply this workaround to block erase, use block programming to 0x00 instead of
block erase. This takes ~6 ms instead of ~3 ms.

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 7/19

Workaround 3

This workaround can be used if block erase cannot be replaced by block programming.

In this workaround, DMA is used to transfer data to the EEPROM instead of the core. All
other DMA transfers are delayed once the core is stalled due to data transfer to memory
controller.

/* start of the workaround in user code, using FW Library */
#ifdef USE_EVENT_MODE
 DMA1_Channel3->CCR= DMA_CCR_MEM | DMA_CCR_IDM | DMA_CCR_TCIE; /*
Config DMA Chn3 Mem, incr, disable, interrupt) */
#else
 DMA1_Channel3->CCR= DMA_CCR_MEM | DMA_CCR_IDM; /* Config DMA
Chn3 (Mem, incr,disable) */
#endif

DMA1_Channel3->CM0ARH= (uint8_t)0; /* Source address */
 DMA1_Channel3->CM0ARL= (uint8_t)0;
 DMA1_Channel3->CPARH= (uint8_t)(addr_begin >> 8); /* Destination
address */
 DMA1_Channel3->CPARL= (uint8_t)(addr_begin);
 DMA1_Channel3->CNBTR= 2; /* Number of data to be transferred */
 DMA1_Channel3->CSPR= 8; /* Low priority, 16 bit mode */
 DMA1_Channel3->CSPR &= ~DMA_CSPR_TCIF;/* Clear TCIF */
 DMA1->GCSR|= 1; /* Global DMA enable */

#ifdef USE_EVENT_MODE
 WFE->CR3 = WFE_CR3_DMA1CH23_EV; /* Enable event generation on
DMA */

#endif
 FLASH->DUKR = 0xAE; /* Unprotect data memory */
 FLASH->DUKR = 0x56;
 while((FLASH->IAPSR & FLASH_IAPSR_DUL) == 0)
 {} /* Polling DUL */
 FLASH_Block_Load();
/* end of the workaround in user code */

/* following routine has to be placed in the RAM */
void FLASH_Block_Load(){
 __asm("sim\n"); /* Disable interrupts */

 FLASH->CR2 |= FLASH_CR2_ERASE; /* Enable erase block mode */
 DMA1_Channel3->CCR|= DMA_CCR_CE; /* Enable DMA MEM transfer */
#ifdef USE_EVENT_MODE
 __asm("wfe"); /* Wait for end of DMA operation */
#else
 while((DMA1_Channel3->CSPR & DMA_CSPR_TCIF) == 0)
 {} /* Polling for end of DMA operation */
#endif

 __asm("rim\n"); /* Enable interrupts */
}

STM8L151x2/x3 silicon limitations Errata sheet

8/19 Doc ID 018903 Rev 2

1.2 System limitations

1.2.1 PA0, PB0 and PB4 configuration “at reset state” and “under reset”

Description

When a reset occurs, PA0, PB0 and PB4 configurations differ from the other pins:

● PA0 is configured as input with pull-up under reset (i.e. during the reset phase) and at
reset state (i.e. after internal reset release).

● A pull-up is applied to PB0 and PB4 under reset (i.e. during the reset phase). These
two pins are input floating at reset state (i.e. after internal reset release).

Workaround

None.

No fix is planned for this limitation.

1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by
the use of adjacent I/Os

Description

The activity on the PC4 and PC7 I/Os (input or output) can lead to missing pulses on the low
speed external oscillator (32.768 kHz external crystal).

Workaround

None.

If a high LSE accuracy is required, PC4 and PC7 must be tied to VDD or VSS.

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 9/19

1.3 I2C peripheral limitations

1.3.1 I2C event management

Description

As described in the I2C section of the STM8L15x microcontroller family reference manual
(RM0031), the application firmware has to manage several software events before the
current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8 and EV3 events
are not managed before the current byte is transferred, problems may occur such as
receiving an extra byte, reading the same data twice or missing data.

Workarounds

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed
before the current byte transfer and before the acknowledge pulse when the ACK control bit
changes, it is recommended to:

1. Use the I2C with DMA in general, except when the Master is receiving a single byte.

2. Use I2C interrupts in nested mode and boost their priorities to the highest one in the
application to make them uninterruptible.

1.3.2 Corrupted last received data in I2C Master Receiver mode

Conditions

In Master Receiver mode, when the communication is closed using method 2, the content of
the last read data may be corrupted. The following two sequences are concerned by the
limitation:

● Sequence 1: transfer sequence for master receiver when N = 2
a) BTF = 1 (Data N-1 in DR and Data N in shift register)

b) Program STOP = 1

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP bit.

● Sequence 2: transfer sequence for master receiver when N > 2
a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0

c) Read Data N-2 in DR

d) Program STOP bit to 1

e) Read Data N-1.

Description

The content of the shift register (data N) is corrupted (data N is shifted 1 bit to the left) if the
user software is not able to read the data N-1 before the STOP condition is generated on the
bus. In this case, reading data N returns a wrong value.

STM8L151x2/x3 silicon limitations Errata sheet

10/19 Doc ID 018903 Rev 2

Workarounds

● Workaround 1

– Sequence 1

When sequence 1 is used to close communication using method 2, mask all active
interrupts between STOP bit programming and Read data N-1.

– Sequence 2

When sequence 2 is used to close communication using method 2, mask all active
interrupts between Read data N-2, STOP bit programming and Read data N-1.

● Workaround 2

Manage I2C RxNE and TxE events with DMA or interrupts of the highest priority level,
so that the condition BTF = 1 never occurs.

1.3.3 Wrong behavior of the I2C peripheral in Master mode after misplaced
STOP

Description

The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated
on the bus. This can happen in the following conditions:

● If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START
condition on the bus after writing to the START bit in the I2C_CR2 register.

● In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register.
If the START bit is already set in I2C_CR2, the START condition is not correctly
generated on the bus and can create bus errors.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit
in the I2C_CR2 control register. The I2C peripheral should be reset in the same way if a
BERR is detected while the START bit is set in I2C_CR2.

No fix is planned for this limitation.

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 11/19

1.3.4 Violation of I2C “setup time for repeated START condition” parameter

Description

In case of a repeated Start, the “setup time for repeated START condition” parameter
(named tSU(STA) in the datasheet and Tsu:sta in the I2C specifications) may be slightly
violated when the I2C operates in Master Standard mode at a frequency ranging from 88 to
100 kHz. tSU(STA) minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:

1. The I2C peripheral operates in Master Standard mode at a frequency ranging from 88
to 100 kHz (no issue in Fast mode)

2. and the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns
(the issue cannot occur when the SCL rise time is less than 300 ns).

– or the slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the
slave.

1.3.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as
well as the maximum current data hold time (tHD;DAT) under the conditions described below.
In addition, if the data register is written too late and close to the SCL rising edge, an error
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:

1. The I2C peripheral operates In Slave transmit mode with clock stretching disabled
(NOSTRETCH=1)

2. and the application is late to write the DR data register, but not late enough to set the
OVR flag (the data register is written before the SCL rising edge).

STM8L151x2/x3 silicon limitations Errata sheet

12/19 Doc ID 018903 Rev 2

Workaround

If the master device supports it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register
is performed just after TXE or ADDR events. You can use an interrupt on the TXE or ADDR
flag and boost its priority to the higher level or use DMA.

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from
being late to write the DR register (second condition).

Note: The first data to be transmitted must be written into the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window to write the first data
into the data register is less than tLOW.

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag

2. Wait for the OVR flag to be set

3. Clear OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case,
the master must discard the first received data.

1.3.6 SMBus standard not fully supported in I2C peripherals

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since it does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

● The use of the SMBA pin if supported by the host

● The alert response address (ARA) protocol

● The Host notify protocol.

Errata sheet STM8L151x2/x3 silicon limitations

Doc ID 018903 Rev 2 13/19

1.4 USART peripheral limitations

1.4.1 USART IDLE frame detection not supported in the case of
a clock deviation

Description

An idle frame cannot be detected if the receiver clock is deviated.

If a valid idle frame of a minimum length (depending on the M and Stop bit numbers) is
followed without any delay by a start bit, the IDLE flag is not set if the receiver clock is
deviated from the RX line (only if the RX line switches before the receiver clock).

Consequently, the IDLE flag is not set even if a valid idle frame occurred.

Workaround

None.

1.4.2 PE flag can be cleared in USART Duplex mode by writing to
the data register

Description

The PE flag can be cleared by a read to the USART_SR register followed by a read or a
write to the USART_DR register.

When working in duplex mode, the following event can occur: the PE flag set by the receiver
at the end of a reception is cleared by the software transmitter reading the USART_SR (to
check TXE or TC flags) and writing a new data into the USART_DR.

The software receiver can also read a PE flag at ‘0’ if a parity error occurred.

Workaround

The PE flag should be checked before writing to the USART_DR.

1.4.3 PE flag is not set in USART Mute mode using address mark detection

Description

If, when using address mark detection, the receiver recognizes in Mute mode a valid
address frame but the parity check fails, it exits from the Mute mode without setting the PE
flag.

Workaround

None.

STM8L151x2/x3 silicon limitations Errata sheet

14/19 Doc ID 018903 Rev 2

1.4.4 IDLE flag is not set using address mark detection in
the USART peripheral

Description

The IDLE flag is not set when the address mark detection is enabled, even when the
USART is in Run mode (not only in Mute mode).

Workaround

None.

Errata sheet Revision code on device marking

Doc ID 018903 Rev 2 15/19

Appendix A Revision code on device marking

The following figures show the standard marking compositions for the LQFP48, UFQFPN28,
UFQFPN20, UFQFPN32, and TSSOP20 packages, respectively. Only the Additional
information field containing the revision code is shown.

Figure 1. LQFP48 top package view

Figure 2. UFQFPN28 top package view

Revision code on device marking Errata sheet

16/19 Doc ID 018903 Rev 2

Figure 3. UFQFPN20 top package view

Figure 4. UFQFPN32 top package view

Errata sheet Revision code on device marking

Doc ID 018903 Rev 2 17/19

Figure 5. TSSOP20 top package view

Revision history Errata sheet

18/19 Doc ID 018903 Rev 2

Revision history

Table 4. Document revision history

Date Revision Changes

30-Jun-2011 1 Initial release.

01-Aug-2011 2
Added Section 1.1.5: Core kept in stall mode when DMA transfer
occurs during program/ erase operation to EEPROM.

Errata sheet

Doc ID 018903 Rev 2 19/19

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Table 1. Device identification
	Table 2. Device summary
	1 STM8L151x2/x3 silicon limitations
	Table 3. Summary of STM8L151x2/3 silicon limitations
	1.1 Core limitations
	1.1.1 Interrupt service routine (ISR) executed with priority of main process
	1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit
	1.1.3 Unexpected DIV/DIVW instruction result in ISR
	1.1.4 Incorrect code execution when WFE execution is interrupted by ISR
	1.1.5 Core kept in stall mode when DMA transfer occurs during program/ erase operation to EEPROM

	1.2 System limitations
	1.2.1 PA0, PB0 and PB4 configuration “at reset state” and “under reset”
	1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by the use of adjacent I/Os

	1.3 I2C peripheral limitations
	1.3.1 I2C event management
	1.3.2 Corrupted last received data in I2C Master Receiver mode
	1.3.3 Wrong behavior of the I2C peripheral in Master mode after misplaced STOP
	1.3.4 Violation of I2C “setup time for repeated START condition” parameter
	1.3.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected and may generate bus errors
	1.3.6 SMBus standard not fully supported in I2C peripherals

	1.4 USART peripheral limitations
	1.4.1 USART IDLE frame detection not supported in the case of a clock deviation
	1.4.2 PE flag can be cleared in USART Duplex mode by writing to the data register
	1.4.3 PE flag is not set in USART Mute mode using address mark detection
	1.4.4 IDLE flag is not set using address mark detection in the USART peripheral

	Appendix A Revision code on device marking
	Figure 1. LQFP48 top package view
	Figure 2. UFQFPN28 top package view
	Figure 3. UFQFPN20 top package view
	Figure 4. UFQFPN32 top package view
	Figure 5. TSSOP20 top package view

	Revision history
	Table 4. Document revision history

